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Abstract

Deep Convolutional Neural Networks (DCNNs) are the key ingredient in the recent
progress in computer vision, medical image processing, and many other machine
learning areas. In this project, we participated in the Data Science Bowl 2017
(DSB-17) challenge [1] on lung cancer detection. We built a lung cancer detection
model based on deep convolutional neural networks to predict from CT scan images
whether a patient has lung cancer. To build an effective model for this task, one
needs to address several challenges. First, the raw CT scan images need to be
preprocessed to extract the lung regions of interest. Second, compared with the
typical use-case of deep convolutional neural networks on two-dimensional images,
CT scan images are three-dimensional and require significantly more computational
resources, imposing restrictions on network architecture and training batch size.
Third, the limited size of the provided DSB-17 dataset also introduces difficulties
and risks of overfitting in training deep convolutional neural networks. To handle
the above challenges, we explored different model designs and techniques, and
used LUNA-16 as our external dataset. In the end, we achieved (after the challenge
deadline) 0.55 loss and 76.7% accuracy on the DSB-17 test set, which is comparable
to the top-50 performances on the Data Science Bowl leader-board.

1 Introduction

As lung cancer causes 1.6 million deaths every year around the world [2], lung cancer detection and
diagnosis is crucial for health care. An increasing amount of research effort has been devoted to
building automatic systems for lung cancer detection based on machine learning. The Data Science
Bowl 2017 (DSB-17) [1] holds a challenge for lung cancer detection. This challenge requires building
a binary classification system that takes the CT scan images of the patients as the input and predicts a
probabilistic classification result indicating whether the patient has cancer or not.

In this project, we address the lung cancer detection task in the DSB-17 with Deep Convolutional
Neural Networks (DCNNs), which are the key components in state-of-the-art methods in computer
vision, medical image processing, and many other areas. They are neural networks that involve
several convolutional layers, followed by densely connected (i.e. fully connected) layers. DCNNs are
proven to be powerful in both image-level classification and pixel-wise segmentation.

To apply deep convolutional neural networks to our cancer detection task, we need to handle several
issues in both machine learning and computation. The first issue is data limitation. It is well known
that deep convolutional neural networks typically require a large amount of data (“big data”) to train.
For example, the ResNet model [3] for 2D image classification in computer vision is trained on 14
million images. However, compared to abundant natural images over the Internet, medical images
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such as CT scans or fMRI images are much more expensive to collect. Consequently, it is difficult or
even impossible to obtain large-scale datasets of medical images that have a comparable size as in
those “big data” areas. In the DSB-17 dataset for lung cancer detection, there are only 1397 patients
available for training, and each patient is associated with only one CT scan image plus a binary label
indicative of cancer. This Data Science Bowl dataset is two or three magnitudes of order smaller
compared to typical large-scale datasets used to train deep convolutional neural networks in computer
vision [4, 5]. Even though we incorporate the external LUNA-16 dataset [6], our total number of
patients is still below 2000. The lack of large-scale datasets poses a great challenge in applying deep
convolutional neural networks on this task.

Besides the data limitation, computation cost is another obstacle in applying deep convolutional
neural networks for lung cancer detection. Compared to traditional machine learning models such as
support vector machines, neural networks requires considerably more computation resources, and
are often deployed in parallel computing hardware such as GPUs. Moreover, the CT images are
three-dimensional rather than two-dimensional. In order to process them, we need three-dimensional
convolutional operations in the network instead of the (more often used) two-dimensional con-
volutional operations. Hence, it takes significantly more time to perform forward and backward
propagation and more GPU memory to store the network and intermediate computation results. The
higher computation cost and memory consumption mean that for a given time, one can only train
for a fewer number of iterations. And for a given GPU memory budget, one can only put in a small
number of samples in a batch. The latter (a small batch size) may cause problems in neural network
training: as deep convolutional neural networks are typically trained based on mini-batch gradient
descent that estimates the gradient of the loss function on the entire dataset using a batch of samples,
a small batch size means that the gradient on each batch can be noisy, so the training procedure may
fail to converge.

Apart from the data limitation, computation cost, and memory consumption, the preprocessing
method also affects the overall performance of lung cancer detection and poses further challenges.
Deep convolutional neural networks often require the inputs to have the same shape. However,
different CT scan images may have different shapes (lengths, widths, and heights) and spacing (the
actual distance in millimeters between two adjacent voxels in the 3D CT scan images). So one needs
to decide how to unify them to the same shape, in order to feed them into the same network. One also
needs to balance the trade-off between the input shape and the computation cost. Over-sized inputs
may consume too much memory, while trimming the images too small may reduce resolution and
lose useful information. Also, for lung cancer detection, only the lung region in the CT scan is of
interest to the task, so one needs an approach to segment the lung regions in the CT scans and remove
the other regions during preprocessing. We describe our preprocessing procedure in Sec. 3.

When trying to build a lung cancer detection model with deep convolutional neural networks, we
encountered all the issues above. In our first method described in Sec. 4, we used a large input
shape and could only use a very small batch size of 3 to fit into our Nvidia Tesla K40 GPU. Under
this setting, the training procedure based on mini-batch gradient descent failed to converge. After
switching to a new preprocessing setting that results in a smaller input size, we could raise our batch
size to 64. However, severe overfitting occurred: we got a 100% accuracy on the training set, but only
71.2% on the test set which is equivalent to the accuracy of classifying all samples as negative. We
tried to combat overfitting by adding more regularization and reducing model complexity. However,
while we were able to bring down the accuracy on the training set with higher regularization and
simpler models, we were unable to make it work better than 71.2% on the test set.

This motivated us to add more data for training. We first tried a simple data augmentation technique of
taking random crops from the 3D CT scans, which did not work well. Then we decided to incorporate
the LUNA-16 dataset for lung nodule detection to get more training data. As the LUNA-16 dataset
contains different annotations from our main dataset DSB-17, we took a different training procedure
in Sec. 5. We first trained a nodule segmentation model based on U-Net [7] to segment the nodules in
the CT scans, and then classified each patient based on his/her top-20 nodule candidates. In this way,
we eventually achieved a loss of 0.55 and an accuracy of 76.7% on the test set (after the challenge
deadline), which is comparable to the top-50 in the Data Science Bowl 2017 leader-board.
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Figure 1: An example CT scan image in the DSB-17 dataset, showing the slices of the 3D image and
the HU values along (a) z-axis, (b) y-axis and (c) x-axis respectively.

Substance HU Substance HU Substance HU

Air -1000 Lung -500 Fat -120 to -90
Water 0 Urine -5 to +15 Bile -5 to +15
CSF +15 Kidney +20 to +45 Lymph nodes +10 to +20
Blood +30 to +45 Muscle +35 to +55 Grey matter +37 to +45
White matter +20 to +30 Liver +40 to +60 Soft Tissue, Contrast +100 to +300
Bone +700 to +3000 Chyle -30

Table 1: The typical Hounsfield Units (HU) of substances in human body.

2 Background and datasets

CT scan images Our lung cancer detection task is based on CT scan images over the patients’ lung
regions. Each CT scan image is a three-dimensional data array (or equivalently, a 3D image) with one
channel at each voxel. The elements in the array (i.e. voxels in the 3D image) contain the Hounsfield
Units (HU) that measure the radiodensity at each location. Different substances in the lung region
have different HU values, so the CT scan image reveals the structure (such as the presence of tumors)
inside the lung region. Figure 1 shows an example image, and Table 1 contains the HU values of
typical substances in human body. Due to the different settings of the scanning machines, different
CT images may have different shapes and spacing. They need to be unified before further processing.

Lung cancer detection and the Data Science Bowl 2017 dataset Lung cancer is a disease that
involves malignant nodules in patients’ lungs. The term nodule represents a spectrum of abnormalities
in the lung that may represent primary lung cancers, metastatic disease, or non-cancerous processes.
In other words, only the patients with nodules in their lungs can potentially have cancer, while not
all nodules indicate lung cancer. Having lung nodules is a necessary but not sufficient condition for
having lung cancer.

The Data Science Bowl 2017 (DSB-17) dataset [1] consists of 1595 patients, including 1397 for
training (362 cancer and 1035 non-cancer) and 198 for test/evaluation (57 cancer and 141 non-cancer).
Each patient is associated with a 3D CT scan image and a cancer/non-cancer binary label. The task is
to train on the training split and evaluate on the test split through the provided evaluation server. It is
allowed to evaluate multiple times on the test split and take the best score.

Nodule segmentation and the LUNA-16 dataset The LUNA-16 dataset [6] is used as our external
dataset to train a nodule segmentation model in Sec. 5. This dataset also contains CT scan images of
the patients’ lung regions. However, unlike DSB-17 that contains binary cancer/non-cancer labels,
the LUNA-16 dataset contains the sizes and locations of nodules in each patient. There are 601 CT
scan images in the LUNA-16 dataset, and all the nodules present in each image are labeled with the
X, Y and Z coordinates and diameters.

The original task on the LUNA-16 dataset is nodule segmentation, that is, predicting the locations
and sizes of all nodules in a given 3D CT scan image. Figure 2 shows an example CT scan and its
nodule annotation in LUNA-16.
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Figure 2: A example CT image in the LUNA-16 dataset. Left: one slice of CT scan along z-axis.
Right: the corresponding annotated nodule mask (the yellow circular region) for that slice.

Deep convolutional neural networks Deep convolutional neural networks are statistical learning
models that have led to recent breakthroughs in many machine learning areas. They are a special
kind of neural networks that consists of several convolutional layers and pooling layers, followed
by densely connected layers (also called fully connected layers). Convolutional layers preserve the
spatial structure of the input data, and pooling layers introduce local translation invariance. Like
other neural networks, convolutional neural networks can be trained with back-propagation, and are
often implemented on GPUs instead of CPUs due to their high computation demand. A thorough
review of convolutional neural networks is beyond the scope of this paper, and we refer readers to [8]
for a detailed survey of them.

3 Data preprocessing

Before feeding the CT scan images into our deep convolutional neural network, we need to unify
the spacing of the 3D CT scans, and then segment the lung region from these CT scans. In
our experiments, we resize all the CT scans to the same spacing of 1mm (a commonly used
spacing in CT image processing) with spline interpolation [9] implemented by the function
scipy.ndimage.interpolation.zoom in Python. The resized CT scan images have the same
spacing: each voxel in the image corresponds exactly to a 1mm × 1mm × 1mm cubical region.
However, after resizing, different CT scan images may still have different shapes (i.e. lengths, widths,
and heights), which we address with different approaches in Sec. 4 and 5.

Lung region segmentation After unifying the spacing, we segment the lung regions from the
CT scan images. Following [10], the lung region are segmented by finding the largest connected
components.

From Table 1, we see that the lung tissues have HU values around -500, and the air in the lung
have HU values around -1000. So the HU values of the entire lung region should be approximately
no higher than -500, while the bone regions are usually above 700. To separate the lung from the
skeleton, we obtain a 3D binary mask by thresholding the 3D CT scan image at -320: all the voxels
with HU values below -320 are labeled as 1 (indicating potential lung regions), and 0 otherwise. Then,
we find the largest connected component in the 1 voxels in the binary mask. A voxel is considered to
be connected to another voxel if they are adjacent to each other and both have values 1 in the mask.
In this way, the CT scan image can be divided into multiple connected components according to
voxel connectivity. The largest connected component is the one with the maximum number of voxels
in it, which can be obtained using the function skimage.measure.label in Python. This largest
connected component should cover most of the lung region, and we treat it as the binary mask of the
lung.

To also include some tissues around the lung that may contain information relevant to the cancer
status, we dilate the largest connected component via a binary erosion [11], extending the lung mask
by 5mm in all directions. Then we apply the dilated lung mask to the original CT scan image by
keeping the regions inside the mask and setting all voxels outside the mask to have -1000 HU. Figure
3 shows an example CT scan image and its segmented lung region, from which it can be seen that the
obtained segmentation mask corresponds exactly to the lung region.
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Figure 3: A sample slice of a CT image, sliced along the z-axis. (a) original CT scan image with HU
values shown in the color bar. (b) the lung mask obtained from the largest connected component. (c)
the segmented lung region after applying the lung mask to the CT image.

Layer Kernel size Kernel stride Output channels Activation function

conv1 (3, 3, 3) (1, 1, 1) 48 Rectified Linear Unit (ReLU)
conv2 (3, 3, 3) (1, 1, 1) 48 Rectified Linear Unit (ReLU)
pool2 (2, 2, 2) (2, 2, 2) 48 -
conv3 (3, 3, 3) (1, 1, 1) 64 Rectified Linear Unit (ReLU)
conv4 (3, 3, 3) (1, 1, 1) 64 Rectified Linear Unit (ReLU)
pool4 (2, 2, 2) (2, 2, 2) 64 -
conv5 (3, 3, 3) (1, 1, 1) 96 Rectified Linear Unit (ReLU)
conv6 (3, 3, 3) (1, 1, 1) 96 Rectified Linear Unit (ReLU)
pool6 (2, 2, 2) (2, 2, 2) 96 -
dense7 - - 256 Rectified Linear Unit (ReLU)
dense8 - - 1 no activation (linear activation)

Table 2: The 3D convolutional neural network in our Classification Method 1. The network consists
of six 3D convolutional layers (with 3 max-pooling layer between them), followed by two densely
connected layers.

Since the lung regions we are interested in have HU values in the range -1000 to +400 (all substances
above +400 are bones with different radiodensity), after segmenting the lung regions, we set all HU
values below -1000 as -1000 and those above +400 as +400, and then linearly rescale the range from
-1000 to +400 into the interval from 0 to 1.

4 Classification Method 1: using a single 3D convolutional neural network

After preprocessing the data and segmenting the lung regions from the CT scan images, we need
to build a binary classification system to classify the images into either cancer or non-cancer. In
our experiments, we tried two different methods for classification. In this section, we describe
our first method (Classification Method 1) that directly classifies the CT images with a single 3D
convolutional neural network.

We design a 3D convolutional neural network that consists of eight parameterized layers, including
six 3D convolutional layers (with three max-pooling layers between them) followed by two densely
connected layers (also called fully connected layers). The architecture of this network is summarized
in Table 2. The rationale behind this design is that the six convolutional layers extract low-level to
high-level semantic information from the CT images, then the two densely connected layers act like
an ordinary neural network to classify the convolution outputs into the two classes.

Also, we note that in Table 2, lower layers have higher spatial resolutions but fewer channels, while
upper layers have lower spatial resolutions but more channels, which is a trade-off for computation
cost and memory consumption: we cannot afford to put in more channels in lower layers since their
spatial size is already very large (otherwise the network cannot fit into the memory). For each input
CT image, the network outputs a scalar score, and we use a sigmoid cross entropy loss over the score
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as follows

L = −y · log
(

1

1 + exp(−s)

)
− (1− y) · log

(
1− 1

1 + exp(−s)

)
(1)

where s is the output score from the network and y is the 0/1 binary label for the CT scan image. We
implemented this network using the open-source TensorFlow package [12]. The entire network can
be trained via back-propagation and mini-batch gradient descent. We use the ADAM solver [13] for
parameter update, which is a variant of mini-batch gradient descent that involves momentum and
gradient scaling. This network is trained on the training split of the DSB-17 dataset on a machine
with a Nvidia K40 GPU.

Since the densely connected layers in Table 2 require fixed input dimensions, the above network
requires that the input shapes (lengths, widths, and heights) are the same over all samples. Hence, we
need to normalize the shapes of the CT scans before feeding them into the network. Here, we run
into the computation cost and memory consumption issues described in Sec. 1. Initially, we took
the shape of the largest segmented lung region among the CT images as the network input shape,
and padded the smaller lung regions with zeros on each side. This approach kept the 1mm spacing
and preserved as much information as possible, but resulted in an input shape of (208, 168, 205), a
large size for 3D convolutions. To fit the network with this input shape into the 12GB memory of our
Nvidia K40 GPU, we could only use a small batch size of 3 in our mini-batch gradient descent. We
observed that our training is unable to converge with this small batch size, and the loss stayed as high
as 0.6 during training. The network trained in this way underfitted the training data and only learned
to classify every CT scan image as negative (non-cancer). The resulting accuracy on the training and
the test set were 74.1% and 71.2%, which are both equal to the fraction of the negative class.

We found that the main reason for the underfitting above is that our batch size 3 is too small.
Consequently, the gradients on the mini-batch are noisy and do not reflect the gradient on the entire
dataset. To fix this underfitting issue, it was necessary to reduce the computation cost and memory
consumption with a smaller input shape, so that a larger batch size could be used. So we took
another approach to unify the shape of CT scan images in DSB-17 and resized all images to shape
64× 64× 64. After this, the network took much less memory with the new input shape, so we could
use a much larger batch size of 64 in our mini-batch gradient descent.

However, we found that the network trained in this way severely overfitted the training set. We
were able to get nearly 100% accuracy on the training set, but still 71.2% accuracy on the test set
as before. To combat overfitting, we first tried to add more regularization, including 1) using a
higher L2-regularization over the parameters, 2) adding a dropout layer [14] between the two densely
connected layers, and 3) adding batch normalization [15] after each convolutional layer. However,
we failed to get any accuracy higher than 71.2% on the test set using these methods. After diagnosis,
we found that the reason for this overfitting behavior was that the training set from DSB-17 has too
few samples (1397) compared to our network complexity.

We then tried to use data augmentation techniques to obtain more data. Instead of using the entire
64× 64× 64 images after resizing, we randomly took 54× 54× 54 crops from it at each time when
feeding the data into the network, which is a technique commonly used in image classification [14].
However, even with data augmentation, the network still overfitted severely. We believed the reason
is that, because the crops were highly correlated (since they are cropped from the same image), the
effective sample size was not much larger than before. Therefore, it is necessary to increase the
number of actual patient samples and add external training data to combat overfitting. We added
LUNA-16 dataset as our external dataset and developed a new classification approach in Sec. 5.

5 Classification Method 2: cancer prediction based on nodule segmentation

We use the LUNA-16 dataset [6] as our external data to alleviate the data limitation issue of DSB-17.
As the CT scan images in LUNA-16 are annotated with nodule locations and diameters rather than
patient-level cancer/non-cancer labels, we cannot simply put LUNA-16 together with DSB-17. We
need a new training approach to utilize both datasets. Inspired by [16], we developed our second
training method (Classification Method 2). Our second method first uses the LUNA-16 dataset to
train a nodule segmentation model, then applies it to the CT images in DSB-17 to find candidate
nodules, and finally uses a 3D convolutional neural network over the top nodule candidates (instead
of the entire image) in DSB-17 to predict patient-level cancer probabilities.
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Figure 4: The U-Net structure [7] used in our model for nodule segmentation. See Sec. 5.1 for details.

5.1 Nodule segmentation based on U-Net structure

The LUNA-16 dataset provides the locations and diameters of the nodules in each CT image for
nodule segmentation. As described in Sec. 2, the nodule segmentation task is to predict a 3D nodule
mask that has the same size as the input CT image, where each location on the mask indicates whether
that location is a nodule. Since nodules are potential regions of cancer lesion, the nodule segmentation
model trained on LUNA-16 should be helpful to the cancer detection task in DSB-17.

One of the most effective model for nodule segmentation is the U-Net [7] structure, which takes 2D
images as input, and outputs 2D pixel-wise segmentation that has the same shape as the input. The
pixel values in the output are the probabilities of whether this pixel is inside a nodule or not. U-Net is
a fully-convolutional network [17], a network that has only convolutional and pooling layers, without
densely connected layers, so that it does not have restrictions on the input size. Shown in Figure
4, U-Net first reduces the resolution of the 2D input to extract the high-level semantic information
through multiple convolutional layers, then combines it with high-resolution layers for pixel-wise
prediction. We refer readers to [7] for details of U-Net.

Computation cost and memory constraints are part of the reasons for using the 2D U-Net structure for
3D nodule segmentation in our second method. While we could in principle use a 3D convolutional
network to perform 3D segmentation directly, it would exceed the memory limit on GPU.

To train the 2D U-Net model for the 3D nodule segmentation task on the LUNA-16 dataset, we
converted 3D segmentation to 2D segmentation with the following strategy: we took all the slices
in the 3D CT scan image along the x-axis, y-axis and z-axis respectively, and trained three U-Net
models separately for the three axes. Each U-Net model was trained to segment the lung region in the
2D slices along one of the three axes. During training, we used a weighted sigmoid cross entropy
loss as follows

L = −wpy · log
(

1

1 + exp(−s)

)
− wn(1− y) · log

(
1− 1

1 + exp(−s)

)
(2)

where wp and wn were the weights of the positive and the negative class respectively. Since the nodule
only occupies a small area in each slice as can be seen in Figure 2, we set wp = 200 and wn = 0.5
to balance the positive and negative classes, avoiding the degenerated solution of classifying every
voxel as negative (non-nodule).

We then used the trained U-Net models for nodule prediction on the DSB-17 dataset. We applied
each U-Net model on all the slices from one CT scan along that axis to obtain a 3D probability array
that has the same size as the CT scan. We then averaged the probability predictions of the three axes
to get the final 3D probability array, and thresholded the 3D probability array at 0.8 to obtain a 3D
mask for the nodule segmentation.
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Figure 5: An example of nodule segmentation and nodule candidate prediction on the DSB-17 dataset.
(a) A slice of the CT scan image along z-axis. (b) The predicted nodule probability on every pixels
of that slice. The red dots show the centroids of the 20 nodule candidates projected onto that slice.
(c) The sum of nodule probabilities along z-axis. The red dots show the x and y coordinates of the
centroids of the top-20 nodule candidates.

Finally, from the 3D nodule mask, we extracted the connected components as nodule candidates. We
first calculated the connected components in the same way as in lung segmentation, then took the
top-20 nodule candidates that have the highest sum of nodule probabilities within each component.
We computed their centroids by weighted averaging the coordinates of voxels within each connected
component, using nodule probabilities as weights. Figure 5 shows an example of nodule segmentation
and the centroids of the top-20 nodule candidates on the DSB-17 dataset.

5.2 Lung cancer classification over nodule clusters

After obtaining the top-20 nodule candidates in each patient’s CT scan image on the DSB-17 dataset,
we cropped a 3D cubical region centered at the centroid of each nodule candidate, and used the 3D
convolutional neural network with the same architecture as described in Table 2 to obtain a cancer
score on each of the 20 nodule candidates. Here, we also need to trade-off for memory constraints: to
make the network fit in the GPU memory of Nvidia K40, we restricted the cubical size to be 32mm
by 32mm by 32mm.

As the nodule probability at each voxel can be useful to detect cancer, we used it together with the
HU values as inputs to the network. During training, we feed the 20 nodules into the network at
the same time to obtain 20 cancer scores on the nodule candidates. For each patient, the network
output is a 20 dimensional vector, and the input to the network is (20, 32, 32, 32, 2) where the first
dimension 20 corresponds to the 20 nodule candidates, and the last dimension 2 corresponds to the
two image channels (containing both the HU values and the nodule probability at each location). We
took the maximum of the 20 scores to be the cancer score for each patient. The rationale of taking the
maximum is that the patient has cancer as long as one of the nodules is cancerous, so the patient-level
risk should be the highest risk among the nodules.

This 3D convolutional neural network was trained on cancer/non-cancer labels on the DSB-17 training
set. During training, we followed the same setting as in Sec. 4 and used the sigmoid cross entropy
loss in Eqn. 1 on the patient-level scores. In this way, we achieved a loss of 0.55 and an accuracy of
76.7% on the DSB-17 test set (after the challenge deadline), which is comparable the top-50 winners
of the Data Science Bowl 2017.

6 Conclusion

In this project, we have addressed the challenging lung cancer detection problem with deep con-
volutional neural networks, and have tried different approaches to solve this task. To address the
data limitation and overfitting issues in our first model, we used the LUNA-16 dataset as external
training data and developed another classification method. In our second method, we first trained
U-Net models on LUNA-16 data for nodule segmentation and predicted top nodule candidates on the
DSB-17 dataset, then built a 3D convolution neural network and used the nodule probability together
with the HU values of the nodule candidates for cancer/non-cancer classification. Our final model
achieves reasonable performance on the DSB-17 dataset.

8



References
[1] Booz Allen. Data Science Bowl 2017. https://www.kaggle.com/c/data-science-bowl-2017,

2017.

[2] BWKP Stewart, Christopher P Wild, et al. World cancer report 2014. 2014.

[3] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778,
2016.

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on,
pages 248–255. IEEE, 2009.

[5] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European Conference on
Computer Vision, pages 740–755. Springer, 2014.

[6] Arnaud Arindra Adiyoso Setio, Alberto Traverso, Thomas de Bel, Moira SN Berens, Cas van den Bogaard,
Piergiorgio Cerello, Hao Chen, Qi Dou, Maria Evelina Fantacci, Bram Geurts, et al. Validation, comparison,
and combination of algorithms for automatic detection of pulmonary nodules in computed tomography
images: the luna16 challenge. arXiv preprint arXiv:1612.08012, 2016.

[7] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical Image Computing and Computer-Assisted
Intervention, pages 234–241. Springer, 2015.

[8] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

[9] Spline Interpolation. https://en.wikipedia.org/wiki/Spline_interpolation, 2017.

[10] Guido Zuidhof. Full Preprocessing Tutorial. https://www.kaggle.com/gzuidhof/
full-preprocessing-tutorial, 2017.

[11] Erosion (morphology). https://en.wikipedia.org/wiki/Erosion_(morphology), 2017.

[12] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

[13] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[15] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[16] Niklas Köhler. 7th Place short overview. https://www.kaggle.com/c/data-science-bowl-2017/
discussion/31576, 2017.

[17] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic seg-
mentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
3431–3440, 2015.

9

https://www.kaggle.com/c/data-science-bowl-2017
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://en.wikipedia.org/wiki/Spline_interpolation
https://www.kaggle.com/gzuidhof/full-preprocessing-tutorial
https://www.kaggle.com/gzuidhof/full-preprocessing-tutorial
https://en.wikipedia.org/wiki/Erosion_(morphology)
https://www.kaggle.com/c/data-science-bowl-2017/discussion/31576
https://www.kaggle.com/c/data-science-bowl-2017/discussion/31576

	Introduction
	Background and datasets
	Data preprocessing
	Classification Method 1: using a single 3D convolutional neural network
	Classification Method 2: cancer prediction based on nodule segmentation
	Nodule segmentation based on U-Net structure
	Lung cancer classification over nodule clusters

	Conclusion

